Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Lancet Glob Health ; 11(4): e546-e555, 2023 04.
Article in English | MEDLINE | ID: covidwho-2255290

ABSTRACT

BACKGROUND: Tuberculosis is a leading infectious cause of death worldwide. Novel vaccines will be required to reach global targets and reverse setbacks resulting from the COVID-19 pandemic. We estimated the impact of novel tuberculosis vaccines in low-income and middle-income countries (LMICs) in several delivery scenarios. METHODS: We calibrated a tuberculosis model to 105 LMICs (accounting for 93% of global incidence). Vaccine scenarios were implemented as the base-case (routine vaccination of those aged 9 years and one-off vaccination for those aged 10 years and older, with country-specific introduction between 2028 and 2047, and 5-year scale-up to target coverage); accelerated scale-up similar to the base-case, but with all countries introducing vaccines in 2025, with instant scale-up; and routine-only (similar to the base-case, but including routine vaccination only). Vaccines were assumed to protect against disease for 10 years, with 50% efficacy. FINDINGS: The base-case scenario would prevent 44·0 million (95% uncertainty range 37·2-51·6) tuberculosis cases and 5·0 million (4·6-5·4) tuberculosis deaths before 2050, compared with equivalent estimates of cases and deaths that would be predicted to occur before 2050 with no new vaccine introduction (the baseline scenario). The accelerated scale-up scenario would prevent 65·5 million (55·6-76·0) cases and 7·9 million (7·3-8·5) deaths before 2050, relative to baseline. The routine-only scenario would prevent 8·8 million (95% uncertainty range 7·6-10·1) cases and 1·1 million (0·9-1·2) deaths before 2050, relative to baseline. INTERPRETATION: Our results suggest novel tuberculosis vaccines could have substantial impact, which will vary depending on delivery strategy. Including a one-off vaccination campaign will be crucial for rapid impact. Accelerated introduction-at a pace similar to that seen for COVID-19 vaccines-would increase the number of lives saved before 2050 by around 60%. Investment is required to support vaccine development, manufacturing, prompt introduction, and scale-up. FUNDING: WHO (2020/985800-0). TRANSLATIONS: For the French, Spanish, Italian and Dutch translations of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 , Tuberculosis Vaccines , Tuberculosis , Humans , Developing Countries , COVID-19 Vaccines , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Tuberculosis/epidemiology , Tuberculosis/prevention & control
2.
PLoS Med ; 20(1): e1004155, 2023 01.
Article in English | MEDLINE | ID: covidwho-2247265

ABSTRACT

BACKGROUND: Tuberculosis (TB) is preventable and curable but eliminating it has proven challenging. Safe and effective TB vaccines that can rapidly reduce disease burden are essential for achieving TB elimination. We assessed future costs, cost-savings, and cost-effectiveness of introducing novel TB vaccines in low- and middle-income countries (LMICs) for a range of product characteristics and delivery strategies. METHODS AND FINDINGS: We developed a system of epidemiological and economic models, calibrated to demographic, epidemiological, and health service data in 105 LMICs. For each country, we assessed the likely future course of TB-related outcomes under several vaccine introduction scenarios, compared to a "no-new-vaccine" counterfactual. Vaccine scenarios considered 2 vaccine product profiles (1 targeted at infants, 1 at adolescents/adults), both assumed to prevent progression to active TB. Key economic inputs were derived from the Global Health Cost Consortium, World Health Organization (WHO) patient cost surveys, and the published literature. We estimated the incremental impact of vaccine introduction for a range of health and economic outcomes. In the base-case, we assumed a vaccine price of $4.60 and used a 1× per-capita gross domestic product (GDP) cost-effectiveness threshold (both varied in sensitivity analyses). Vaccine introduction was estimated to require substantial near-term resources, offset by future cost-savings from averted TB burden. From a health system perspective, adolescent/adult vaccination was cost-effective in 64 of 105 LMICs. From a societal perspective (including productivity gains and averted patient costs), adolescent/adult vaccination was projected to be cost-effective in 73 of 105 LMICs and cost-saving in 58 of 105 LMICs, including 96% of countries with higher TB burden. When considering the monetized value of health gains, we estimated that introduction of an adolescent/adult vaccine could produce $283 to 474 billion in economic benefits by 2050. Limited data availability required assumptions and extrapolations that may omit important country-level heterogeneity in epidemiology and costs. CONCLUSIONS: TB vaccination would be highly impactful and cost-effective in most LMICs. Further efforts are needed for future development, adoption, and implementation of novel TB vaccines.


Subject(s)
Tuberculosis Vaccines , Tuberculosis , Infant , Adult , Adolescent , Humans , Cost-Benefit Analysis , Developing Countries , Tuberculosis/epidemiology , Tuberculosis/prevention & control , Vaccination/methods
3.
PLoS Negl Trop Dis ; 15(7): e0009604, 2021 07.
Article in English | MEDLINE | ID: covidwho-1360647

ABSTRACT

BACKGROUND: Onchocerciasis ("river blindness") can cause severe morbidity, including vision loss and various skin manifestations, and is targeted for elimination using ivermectin mass drug administration (MDA). We calculated the number of people with Onchocerca volvulus infection and onchocercal skin and eye disease as well as disability-adjusted life years (DALYs) lost from 1990 through to 2030 in areas formerly covered by the African Programme for Onchocerciasis Control. METHODS: Per MDA implementation unit, we collated data on the pre-control distribution of microfilariae (mf) prevalence and the history of control. Next, we predicted trends in infection and morbidity over time using the ONCHOSIM simulation model. DALY estimates were calculated using disability weights from the Global Burden of Disease Study. RESULTS: In 1990, prior to MDA implementation, the total population at risk was 79.8 million with 26.0 million (32.5%) mf-positive individuals, of whom 17.5 million (21.9%) had some form of onchocercal skin or eye disease (2.5 million DALYs lost). By 2030, the total population was predicted to increase to 236.1 million, while the number of mf-positive cases (about 6.8 million, 2.9%), people with skin or eye morbidity (4.2 million, 1.8%), and DALYs lost (0.7 million) were predicted to decline. CONCLUSIONS: MDA has had a remarkable impact on the onchocerciasis burden in countries previously under the APOC mandate. In the few countries where we predict continued transmission between now and 2030, intensified MDA could be combined with local vector control efforts, or the introduction of new drugs for mopping up residual cases of infection and morbidity.


Subject(s)
Antiparasitic Agents/therapeutic use , Ivermectin/therapeutic use , Onchocerciasis, Ocular/pathology , Skin Diseases, Parasitic/pathology , Africa South of the Sahara/epidemiology , Antiparasitic Agents/administration & dosage , Humans , Ivermectin/administration & dosage , Mass Drug Administration , Models, Biological , Onchocerciasis, Ocular/drug therapy , Onchocerciasis, Ocular/epidemiology , Risk Factors , Skin Diseases, Parasitic/drug therapy , Skin Diseases, Parasitic/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL